ZW251, a novel glypican-3-targeting antibody-drug conjugate bearing a topoisomerase I inhibitor payload, demonstrates compelling preclinical activity in hepatocellular carcinoma models

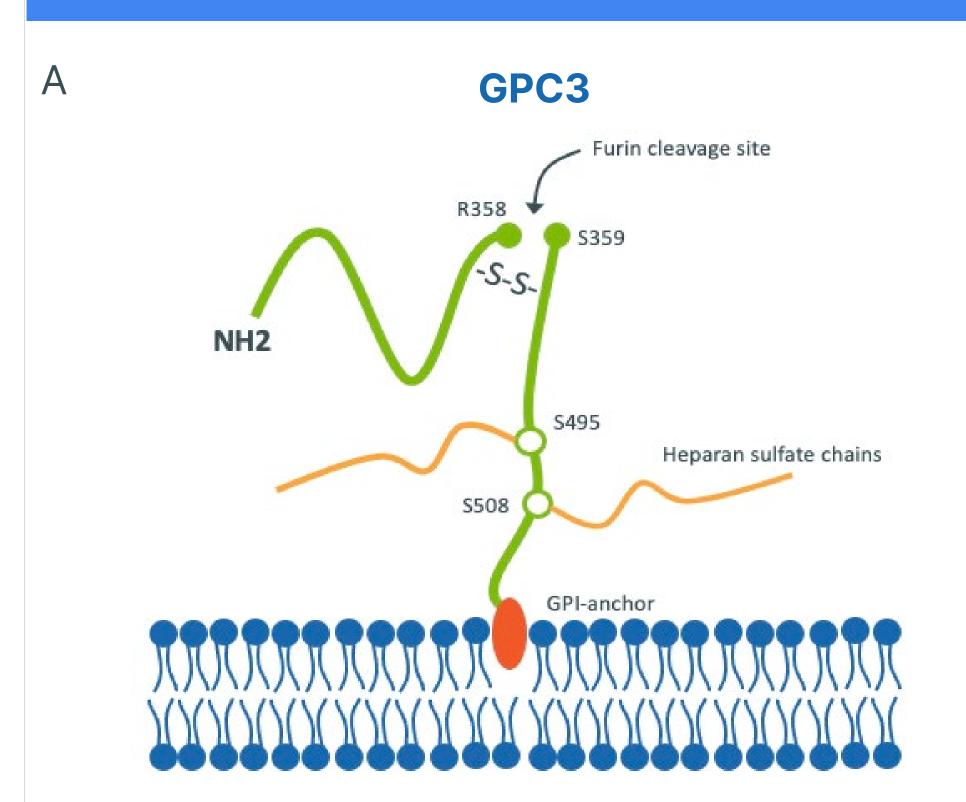
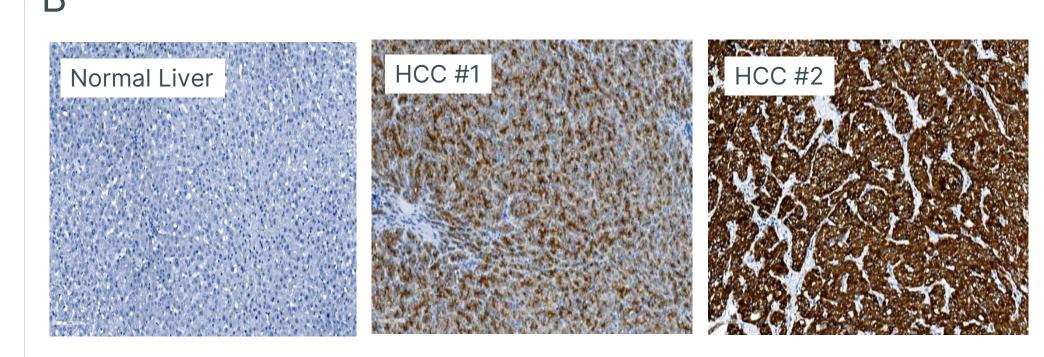
Laurence Madera; Alex Wu; Andrea Hernández Rojas; Raffaele Colombo; Dunja Urosev; Allysha Bissessur; Adele Chan; Chi Wing Cheng; Kevin Yin; Vincent Fung; Kaylee Wu; Devika Sim; Diego A. Alonzo; Janice Tsui; Mark E. Petersen; Sara Hershberger; Kurt Stahl; Steve Seredick; Stuart D. Barnscher; Jamie R. Rich

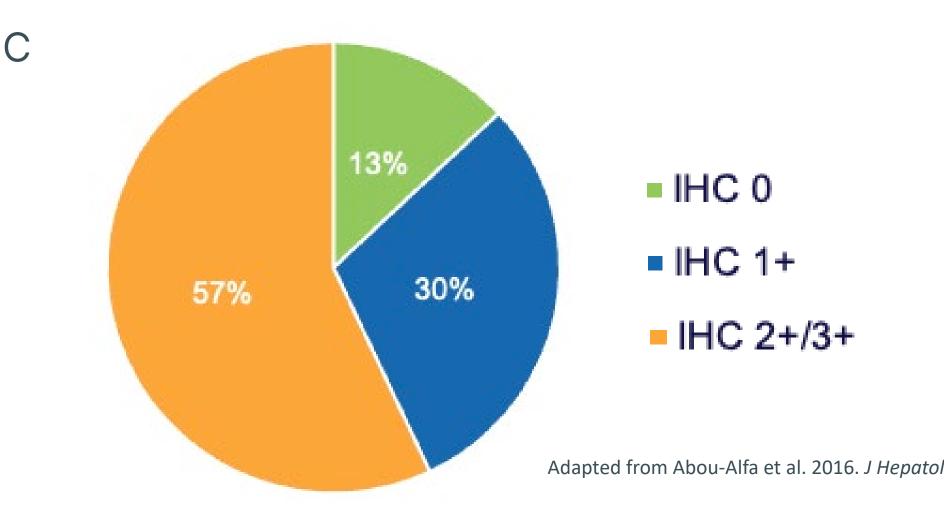
Author affiliations: Zymeworks Inc., Vancouver, BC, Canada

ZW251: Anti-Glypican-3 Antibody-Drug Conjugate

ZW251 is an antibody-drug conjugate (ADC) consisting of a topoisomerase 1 inhibitor payload conjugated to an antibody targeting Glypican-3 (GPC3). Topoisomerase 1 inhibiting ADCs have demonstrated wide clinical benefit in solid tumors and ZW251 aims to apply this against a target expressed in hepatocellular carcinoma (HCC), a disease with high unmet need and limited treatment options. We demonstrate that ZW251 exhibits desired targetmediated activity in vitro, robust anti-tumor activity against a panel of CDX/PDX HCC models, and favorable tolerability profile in a non-GLP nonhuman primate toxicology study.

ZW251 Antibody-Drug Conjugate


Figure 1. ZW251 ADC composition and linker-payload structure.

- Humanized anti-GPC3 monoclonal antibody
- ZD06519 topoisomerase 1 inhibitor payload
- Interchain disulfide conjugation
- Optimized drug-antibody ratio (DAR) of 4

GPC3 is a Compelling ADC Target for Hepatocellular Carcinoma

GPC3 Expression Pattern in HCC	GPC3 Prevalence in HCC	
N/A	86% (n = 229)	Ye <i>et al.</i> Transl Cancer Res 2020
57% IHC 2+/3+ 30% IHC 1+ 13% IHC 0	87% (n = 185)	Abou-Alfa <i>et al.</i> J. Hepatol 2016
3% +++ 75% ++ 17% + 4% Negative	96% (n = 69)	Wang <i>et al.</i> Oncotarget 2016
N/A	95% (n = 55)	Liu <i>et al.</i> World J Gastroenterol 2010
55% Diffuse 21% Focal 24% Negative	76% (n = 111)	Wang <i>et al.</i> Arch Pathol Lab Med 2008
84% ++ 0% + 16% Negative	84% (n = 56)	Yamauchi <i>et al.</i> Mod Pathol 2005
N/A	83% (n = 23)	Capurro <i>et al.</i> Gastroenterol 2003

Figure 2. (A) GPC3 structure. (B) Representative IHC staining in human normal liver and HCC samples. (C) Prevalence and intensity of GPC3 expression in patients with HCC

- Cell-surface GPI-anchored oncofetal glycoprotein¹
- Involved in the Wnt/β-catenin signaling pathway¹

Discovered with Functional Genomic mRNA Profiling of a Large Cancer Database. Am J Pathol. 2018, 188, 1973-1981

- Expressed in fetal tissues and down regulated in adult tissues²
- Demonstrated anti-GPC3 antibody accumulation in HCC patient tumors³
- GPC3 is highly expressed in most HCC tumors² and exhibits limited expression in healthy tissues
- GPC3 is also expressed in subsets of patients with other solid tumor diseases⁴

ZW251 Selectively Binds, Internalizes, and Kills GPC3 Expressing Tumor Cell Lines

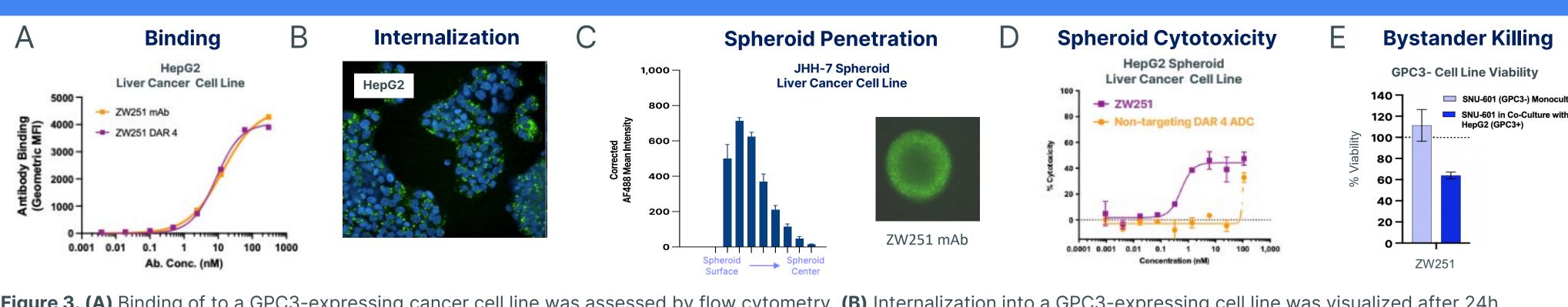


Figure 3. (A) Binding of to a GPC3-expressing cancer cell line was assessed by flow cytometry. (B) Internalization into a GPC3-expressing cell line was visualized after 24h treatment with ADC coupled to an anti-human IgG Fab-488 and subsequent surface quenching. (C) Spheroid penetration was visualized after 24h treatment with ZW251 mAb coupled to an anti-human IgG Fab-488. (D) Cytotoxicity was assessed by treating spheroids with ADC for 4 days and assessed for viability using CellTiterGlo®. (E) Bystander effect assessed by measuring viability by flow cytometry of SNU-601 GPC3- cells in monoculture, or co-culture with GPC3+ HepG2 cells, following treatment with 1 nM ZW251 for 4 days.

ZW251 Demonstrates Robust In Vivo Anti-Tumor Activity in a Broad Panel of HCC Xenograft Models

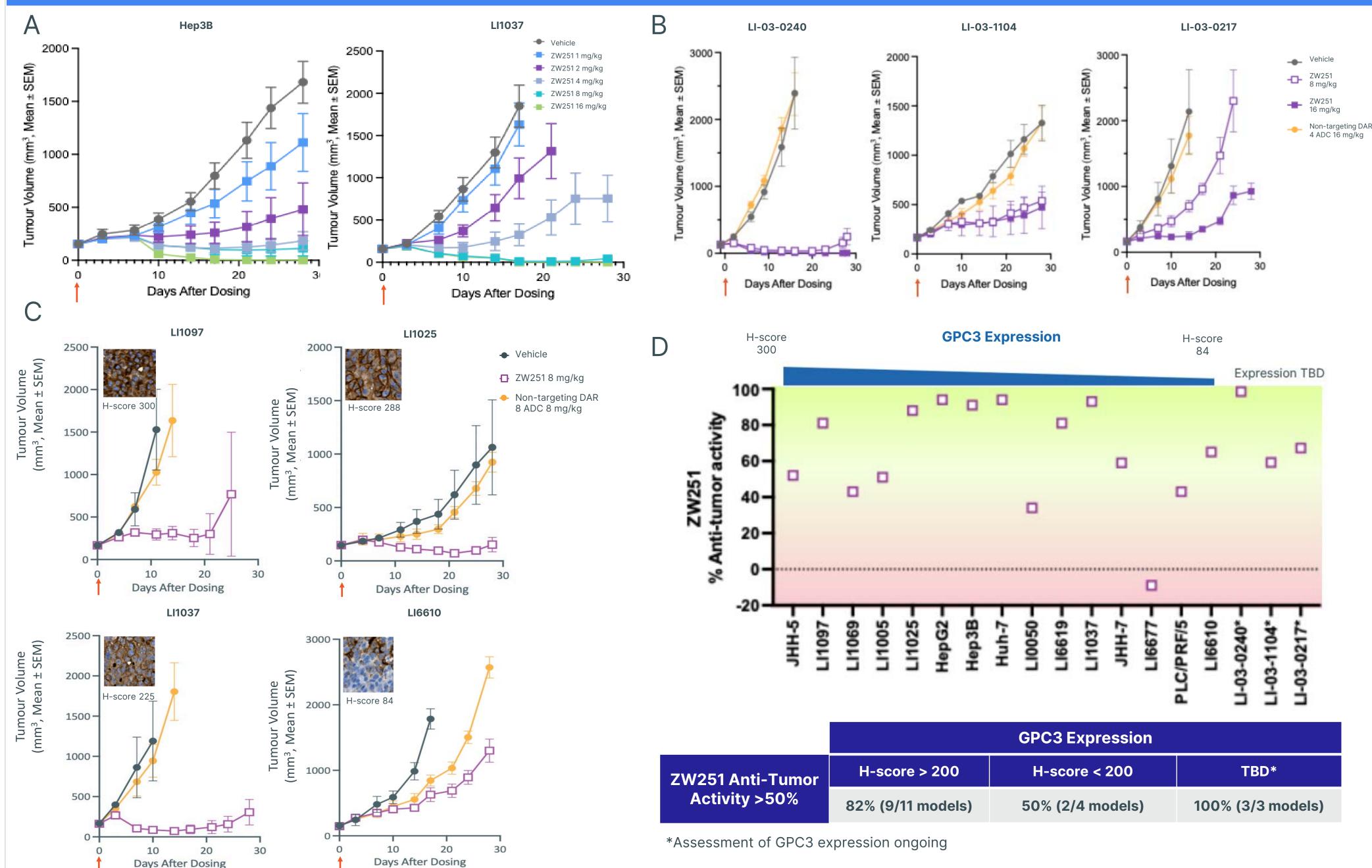
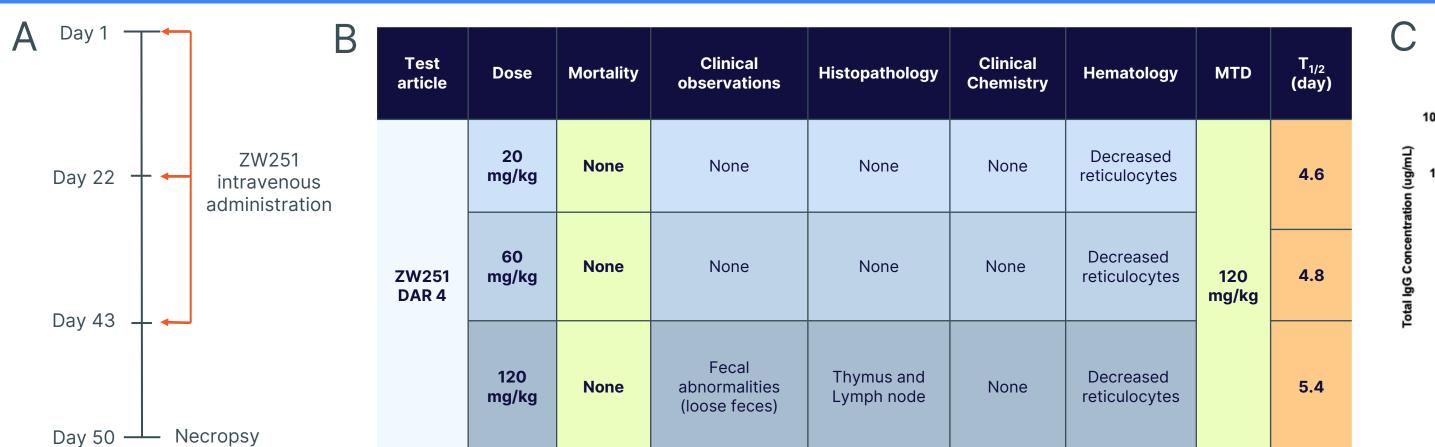



Figure 4. (A) Dose response activity of ZW251 in mice engrafted with Hep3B CDX or LI1037 PDX tumors, 8 mice per group. (B) Activity of ZW251 at 8 and 16 mg/kg in mice engrafted with HCC PDX models, 3 mice per group. (C) Representative studies showing activity of ZW251 at 8 mg/kg in mice engrafted with a range of HCC PDX models, 3 mice per group. (D) Breadth of ZW251 anti-tumor activity across all tested CDX/PDX models of HCC. Anti-tumor activity at 8 mg/kg was determined by %tumor growth inhibition calculated as [(1-TV_{treatment}/TV_{vehicle}) x 100] at Day 21, or at the closest evaluable time point. GPC3 expression was determined by IHC using codrituzumab followed by pathologist scoring.

- Dose response anti-tumor activity observed in CDX and PDX models of HCC
- Single dose at 8 mg/kg results in anti-tumor activity in 5/6 CDX models and 9/12 PDX HCC models, including those with lower or heterogenous GPC3 expression
- Compelling breadth of anti-tumor activity activity observed with ZW251 DAR 4 ADC
- Broad target-mediated in vivo activity across a range of HCC models highlights the therapeutic potential of ZW251 in HCC

ZW251 Well Tolerated in Repeat Dose Non-Human Primate Toxicology Study and Exhibits Dose-Proportional PK

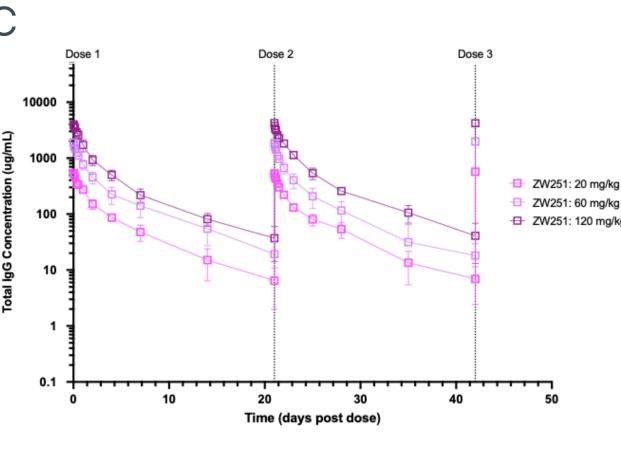


Figure 5. (A) Study design of a repeat dose non-GLP toxicology study in cynomolgus monkeys performed to assess the tolerability and pharmacokinetic profile of ZW251. (B) Toxicology results of non-human primates administered with ZW251. (C) Total human antibody levels in non-human primate serum as measured by ELISA

- Dose proportional pharmacokinetics observed with total antibody levels in non-human primate serum in a multi-dose study
- Treatment-related lower mean reticulocyte counts observed and deemed non-adverse in all dose groups; non-adverse decreased thymus cellularity and mesenteric lymph node cellularity seen with microscopic observation in one animal administered 120 mg/kg
- No mortality or adverse clinical observations, body weight effects, food consumption observed; no on-target toxicity observed
- Impressive tolerability in non-human primates of ZW251 up to 120 mg/kg suggests potential for high first-in-human dosing of ZW251

Clinical Efficacy of Approved Agents Emphasizes Significant Unmet Need in HCC

atezolizumab + bevacizumab

existing SOC

	Line	ORR	mPFS (months)	mOS (months)	Reference
Atezolizumab + bevacizumab	1L	30%	6.9	19.2	Finn RS et al. ASCO GI 2021
Durvalumab + tremelimumab	1 L	20%	3.8	16.4	Abou-Alfa GK et al. ASCO GI 2022
Durvalumab	1L	17%	3.7	16.6	Abou-Alfa GK et al ASCO GI 2022
Nivolumab	1L	15%	3.7	16.4	Yau T et al. Lancet Oncol 2022
Sorafenib	1L	5-11%	3.8-4.3	13-15	Abou-Alfa GK et al. ASCO GI 2022
Lenvatinib	1L	19%	7.3	13.6	Kudo M et al. The Lancet 2018
Regorafenib	2L	11%	3.1	10.6	Bruix J et al. The Lancet 2018
Cabozantinib	2L	4.6%	5.2	10.2	Abou-Alfa GK et al. NEJM 2018
Ramucirumab	2L	4.6%	2.8	8.5	Zhu AX et al. Lancet Oncol 2019

Figure 6. Clinical efficacy of approved therapeutic agents against HCC

- including those with lower and heterogenous GPC3 expression • ZW251 demonstrates impressive tolerability in a repeat dose NHP toxicology study
 - ZW251 DAR 4 offers an optimal balance

• ZW251 exhibits robust anti-tumor activity in a

large panel of HCC CDX and PDX models,

- between tolerability and breadth of anti-tumor activity **ZW251 DAR 4 was selected for further**
- development, with a planned IND submission in H2 2025
- ZW251 may provide an opportunity to address unmet need in HCC and other GPC3expressing tumors

- Therapeutic outcomes associated with approved drugs highlight an unmet need in HCC • ZW251 offers the potential of a new mechanism-of-action for patients, and an opportunity to improve upon
- the existing standard of care (SOC) An ADC approach allows potential therapeutic strategy of ZW251 as a monotherapy, or in combination with
- 2. Hanlin L. Wang, Florencia Anatelli, Qihui"Jim" Zhai, Brian Adley, Shang-Tian Chuang, Ximing J. Yang; Glypican-3 as a useful diagnostic marker that distinguishes hepatocellular carcinoma from benign hepatocellular mass lesions. Arch Pathol Lab Med. 2008, 132, 1723-1728. 3. Carrasquillo, J.A., O'Donoghue, J.A., Beylergil, V. et al. I-124 codrituzumab imaging and biodistribution in patients with hepatocellular carcinoma. EJNMMI Re 4. Moek, K.L., Fehrmann, R.S.N., van der Vegt, B., de Vries, E.G.E., de Groot, D.J.A. Glypican 3 Overexpression across a Broad Spectrum of Tumor Types

Conclusions