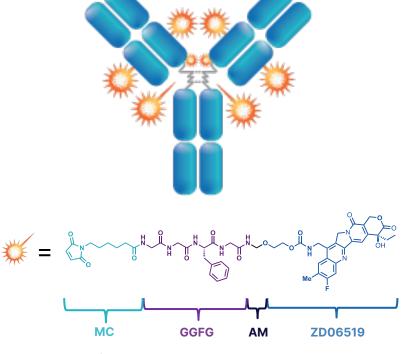


ZW251A Novel Glypican-3-targeting ADC Bearing a Topoisomerase I Inhibitor Payload

Laurence Madera - Senior Scientist, ADC Therapeutic Development, Zymeworks


October 17, 2023

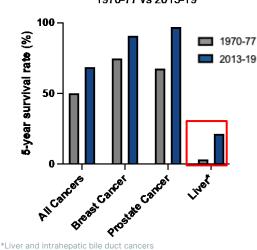
World ADC San Diego 2023

ZW251 – A Novel Glypican-3-targeting ADC Bearing a Topoisomerase I Inhibitor Payload

ZW251 composition

- Humanized IgG1 monoclonal antibody against glypican-3 (GPC3)
 - Specifically selected for strong binding and internalization
- ZD06519 topoisomerase I inhibitor payload
 - Desired balance of stability, activity, and tolerability, with bystander-active properties
- Drug-to-antibody-ratio (DAR) 4 and 8 molecules evaluated
- ZW251 is an ADC designed for the treatment of hepatocellular carcinoma (HCC)

DAR 8 pictured for illustrative purposes


Hepatocellular Carcinoma has a High Burden of Disease

Liver cancer has a high burden

~40,000 cases diagnosed each year ~30,000 deaths each year

Changes in 5-year **Cancer Survival Rates** 1970-77 vs 2013-19

Limited systemic treatment options exist for HCC

2007: sorafenib

2017: regorafenib, nivolumab

2018: lenvatinib, pembrolizumab

2019: cabozantinib, ramucirumab

2020: nivolumab + ipilimumab, atezolizumab + bevacizumab

2022: durvalumab + tremelimumab

Dates of approval for treatment of HCC obtained from FDA.gov

HCC is difficult to treat

Different drug classes can be active in HCC

- Alkylating agents¹
- Anthracyclines¹
- Topoisomerase inhibitors²
- Multi-kinase inhibitors¹
- Anti-angiogenics1
- Checkpoint inhibitors³

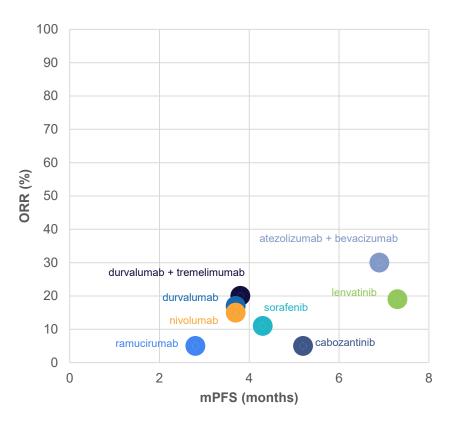
Limited targeted therapy classes approved in HCC³

Anti-angiogenics:

- Cyramza
- Avastin

Checkpoint inhibitors:

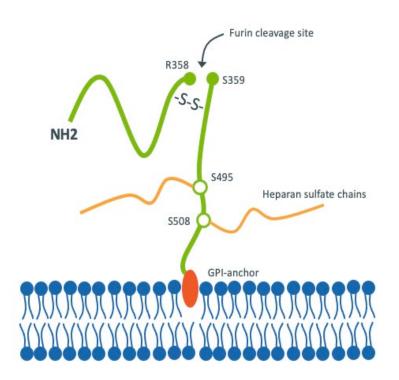
- Opdivo, Keytruda
- Tecentria, Imfinzi
- Imjudo, Yervoy


ADC format may enhance efficacy of small molecule chemotherapeutics with a first-in-class opportunity

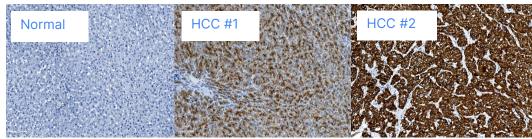
¹Grazie et al. 2017. World J Hepatol; ²Martin et al. 2009. World J Surg Oncol: 3Llovet et al. 2021, Nat Rev Dis Primers

US SEER Data

Currently Approved Therapies in HCC have Low Efficacy


	Line of treatment	ORR	mPFS (months)		
Atezolizumab + bevacizumab¹	1L	30%	6.9		
Durvalumab + tremelimumab²	1L	20%	3.8		
Durvalumab ²	1L	17%	3.7		
Nivolumab ³	1L	15%	3.7		
Sorafenib ²	1L	5-11%	3.8-4.3 7.3		
Lenvatinib ⁴	1L	19%			
Regorafenib ⁵	2L	11%	3.1		
Cabozantinib ⁶	2L	4.6%	5.2		
Ramucirumab ⁷	2L	4.6%	2.8		

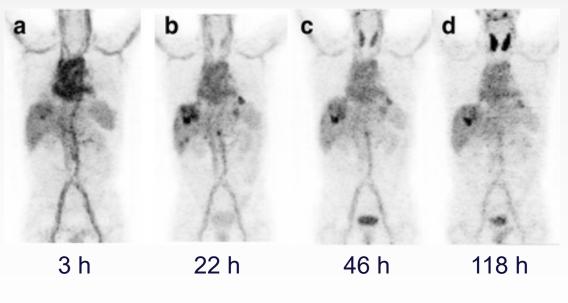
Limited therapeutic options for later lines of treatment


¹IMbrave150; Finn RS *et al.* ASCO GI 2021 ²HIMALAYA; Abou-Alfa *et al.* ASCO GI 2022 ³CheckMate459; Yau *et al.* Lancet Oncol 2022 ⁴REFLECT: Kudo *et al.* Lancet 2018 RESOURCE; Bruix et al. Lancet 2017 CELESTIAL; Abou-Alfa et al. NEJM 2018 REACH-2; Zhu et al. Lancet Oncol 2019

GPC3 is Prevalent and Highly Expressed in Hepatocellular Carcinoma zymeworks

Cell-surface GPI-anchored oncofetal glycoprotein

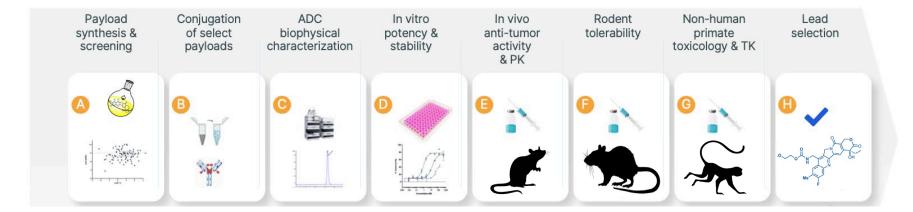
HCC % Positivity	Intensity	Reference
87%	57% IHC2+/3+	Abou-Alfa et al. 2016. J Hepatol
96%	75% '++', 3% '+++'	Wang et al. 2016. Oncotarget
84%	84% '++'	Yamauchi <i>et al.</i> 2005. <i>Mod</i> <i>Pathol</i>
76%	N.D.	Wang et al. 2008. <i>Arch Pathol Lab Med</i>


N.D. - not determined

Making a Meaningful Difference

GPC3-targeting Antibody can Rapidly Localize into HCC Lesions

Uptake of iodine radiolabeled codrituzumab (anti-GPC3) in an HCC patient



- Uptake observed in 13 of 14 HCC patients with a range of GPC3 expression
- Rapid localization to liver tumor lesions within hours, peaking at 24 h
- No preferential normal organ accumulation except for the thyroid
- Antibody-based targeting of GPC3 enables a selective approach to HCC

Carrasquillo et al. 2018, EJNMMI Res

ZW251 Utilizes a Pipeline-ready Topoisomerase I Inhibitor ADC Platform

PAYLOAD

Novel camptothecin with moderate potency and strong bystander activity

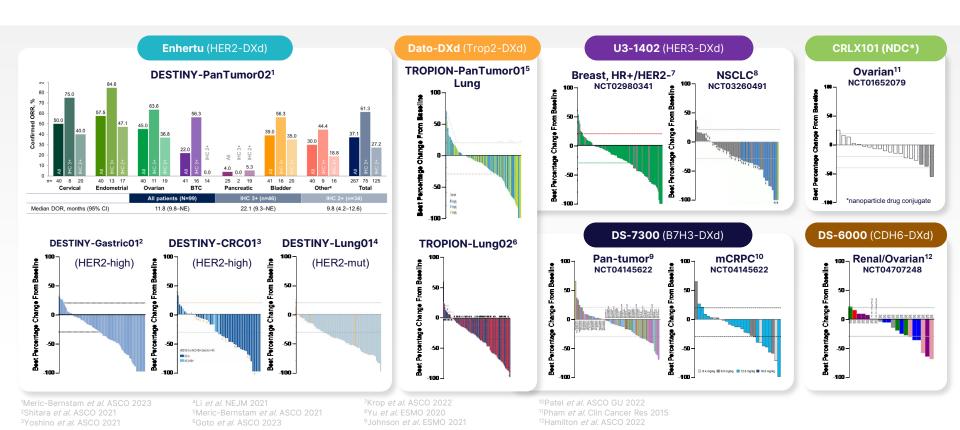
- Acknowledges complex mechanisms driving TOPO1i ADC action
- Sufficient tolerability to achieve ADC dose > 5 mg/kg

LINKER

Traceless, cleavable peptide

- Common to majority of approved ADCs
- Compatible with desired bystander activity

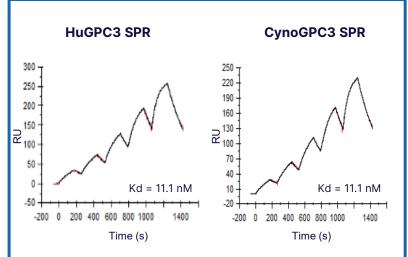
CONJUGATION


Thiol-maleimide chemistry

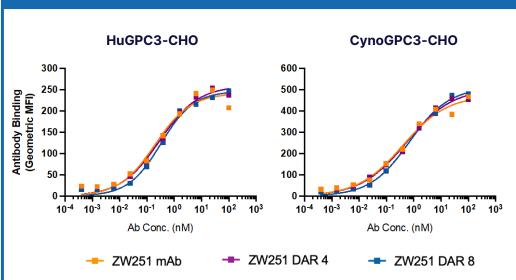
- Stochastic conjugation utilized in all approved ADCs
- Facilitates DAR optimization
- Good balance of stability, safety, and anti-tumor activity

Adapted from Lawn et al. World ADC London 2023

Topoisomerase I Inhibitor Payloads are Providing Meaningful Benefit to Solidtumor Patients



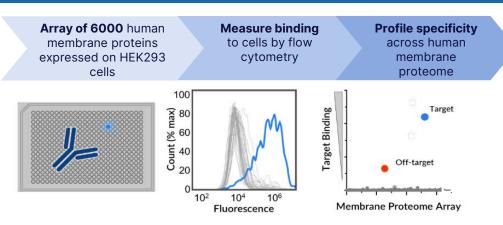
ZW251 Demonstrates Desired GPC3 Binding and Cross-reactivity



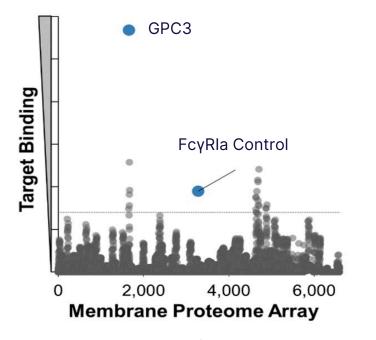
SPR binding to GPC3

Binding of soluble GPC3 extracellular domain to immobilized ZW251 mAb measured by surface plasmon resonance (SPR)

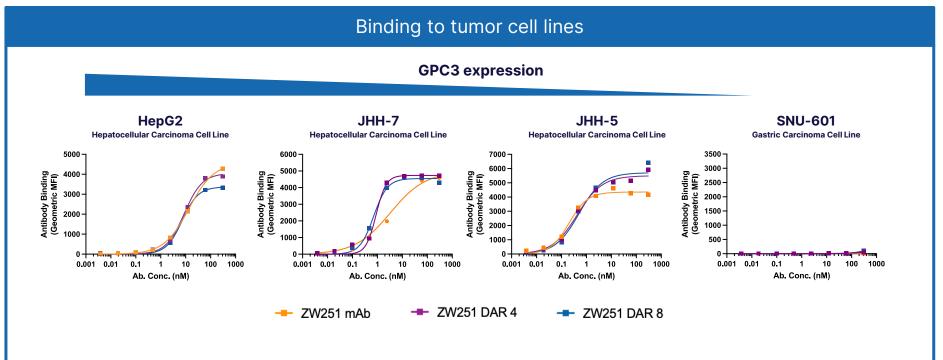
Binding to GPC3-transfected CHO



Binding of ZW251 to transfected CHO cells expressing human or cynomolgus monkey GPC3 assessed by flow cytometry.

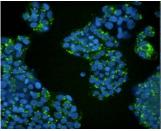

ZW251 mAb Binds GPC3 with a High Degree of Specificity

ZW251 membrane proteome specificity screen

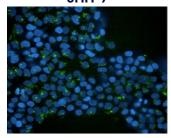

- Includes 94% of all human single-pass, multi-pass, and GPI-anchored proteins, including GPCRs, ion channels, and transporters
- Specificity profiled by measuring binding to HEK293 cells expressing an array of membrane proteins
- Hits in initial screen were subsequently validated to confirm binding

Screening performed at Integral Molecular

ZW251 Demonstrates Binding to GPC3-expressing Tumor Cells

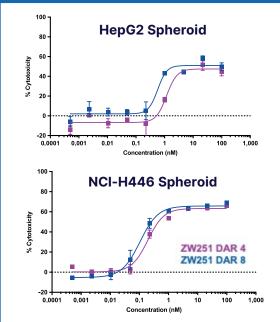

Binding of ZW251 mAb and ADC to cancer cell lines with a range of GPC3 expression was assessed by flow cytometry. SNU-601 was utilized as a GPC3- cell line.

ZW251 Internalizes into Tumor Cells Resulting in Cytotoxicity

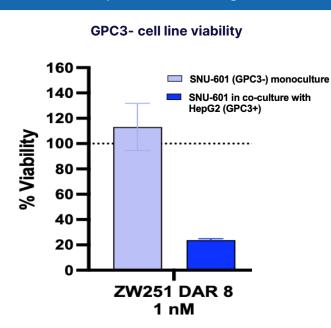


Internalization

HepG2



JHH-7

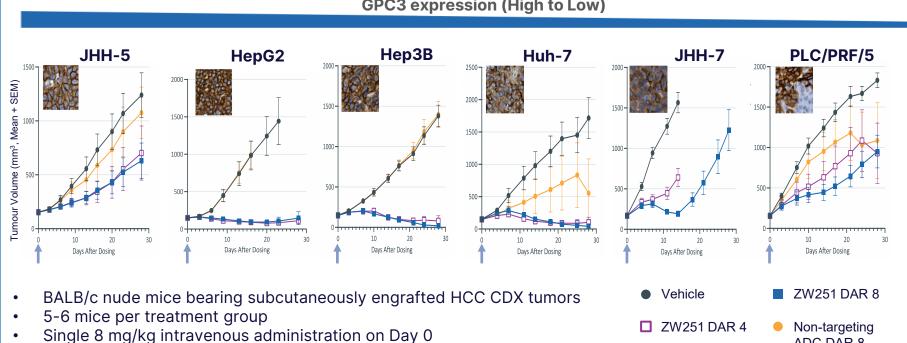

ZW251 internalization visualized after 24h treatment with ADC coupled to an antihuman IgG Fab-488 and subsequent surface quenching.

Tumor spheroid cytotoxicity

Cytotoxicity assessed by treating cell line spheroids with ZW251 for 4 days and assessed for viability using CellTiterGlo®.

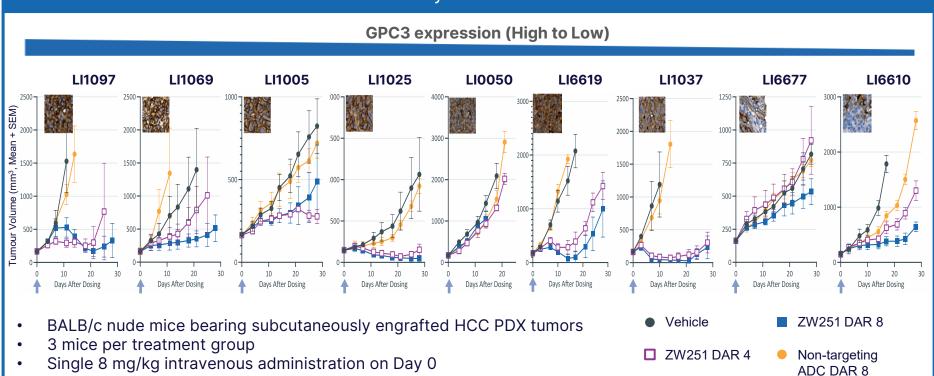
Bystander killing

Bystander effect assessed by measuring viability of SNU-601 GPC3- cells in monoculture, or co-culture with GPC3+ HepG2 cells, following treatment with ZW251 for 4 days.


Madera et al. AACR 2023 Poste

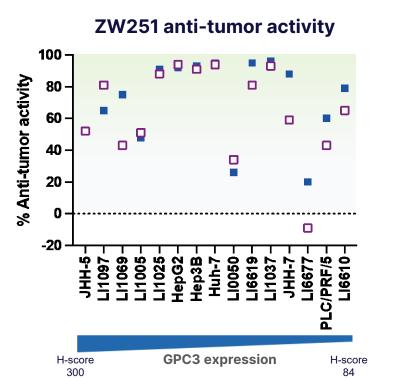
ZW251 Demonstrates Anti-tumor Activity in a Range of HCC CDX Models

ZW251 activity in HCC CDX models



ADC DAR 8

ZW251 Demonstrates Anti-tumor Activity in a Broad Range Of HCC PDX Models zymeworks



ZW251 Exhibits Broad Range Anti-tumor Activity in a Wide Range of HCC Xenograft Models zymeworks

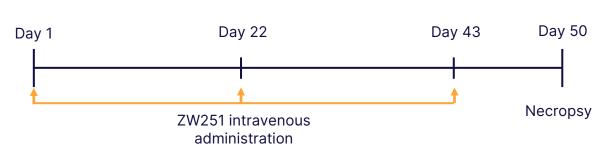
DAR 8

DAR 4

% anti-tumor activity was determined by % tumor growth inhibition (%TGI) calculated as [(1-TV_{treatment}/TV_{vehicle}) x 100] at Day 21, or at the closest evaluable time point.

- ZW251 anti-tumor activity observed in 6/6 CDX and 7/9 PDX models of HCC
- Increased activity observed with higher drug loading
- ZW251 may perform better in higher expressing models
- Anti-tumor activity observed in models with H-scores as low as 84
- **ZW251 demonstrates compelling pre-clinical** efficacy against models of HCC

	ZW251 anti-tumor activity					
H-score	DAR 8	DAR 4				
> 200	82% (9/11)	82% (9/11)				
< 200	75% (3/4)	50% (2/4)				


Scope of ZW251 anti-tumor activity, as defined by %TGI > 50%

Making a Meaningful Difference

ZW251 Tolerability was Assessed in a Non-human Primate Toxicology Study

Repeat dose non-GLP NHP study design

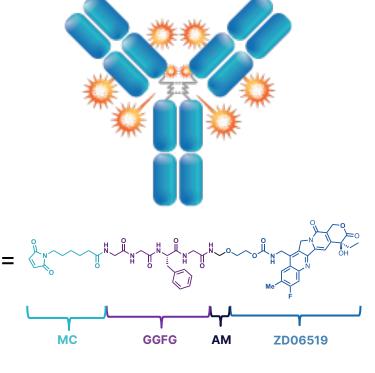
Test article	Doses						
ZW251 DAR 8	10 mg/kg	30 mg/kg	60 mg/kg				
ZW251 DAR 4	20 mg/kg	60 mg/kg	120 mg/kg				

Assessment of ZW251:

- Toxicology
 - Mortality
 - Body weight
 - Food consumption
 - Cage side/clinical observation
 - Coagulation
 - Hematology
 - Clinical chemistry
 - Macroscopic observations
 - Tissue histopathology
- Pharmacokinetics
 - C_{max}
 - AUC
 - $t_{1/2}$

ZW251 is Well-tolerated in a Repeat Dose Non-human Primate Toxicology Study

Test article	Dose	Mortality	Clinical observations	Histopat hology	Clinical Chemistry	Hematology	MTD	T _{1/2} (day)	Do	ose 1	Dose 2	Dose 3
ZW251 DAR 8	10 mg/kg	None	None	None	None	Decreased reticulocytes		4.4	10000	1000		
	30 mg/kg	None	None	None	None	Decreased reticulocytes	60 mg/kg	4.7	() Jw/gn/ 1000			DAR4
	60 mg/kg	None	Fecal abnormalities (loose/soft feces)	None	None	Decreased reticulocytes		5.0	je je		DAR8	
ZW251 DAR 4	20 mg/kg	None	None	None	None	Decreased reticulocytes	120 mg/kg	4.6	Total IgG Cor			■ 30 mg/k _l ■ 60 mg/k _l
	60 mg/kg	None	None	None	None	Decreased reticulocytes		4.8	1			
	120 mg/kg	None	Fecal abnormalities (loose feces)	Thymus and Lymph node	None	Decreased reticulocytes		5.4	0.1 0			40 50


- Dose proportional pharmacokinetics observed with total antibody levels in non-human primate serum in a multi-dose study
- Treatment-related lower mean reticulocyte counts observed and deemed non-adverse in all dose groups
- Non-adverse decreased thymus cellularity and mesenteric lymph node cellularity seen with microscopic observation in one animal administered
 120 mg/kg (DAR4)
- No mortality or adverse clinical observations, body weight effects, food consumption observed; lack of on-target toxicity observed
- Impressive tolerability in non-human primates suggests potential for high first-in-human dosing of ZW251

ZW251 is a Potential First-in-class GPC3-targeting Topoisomerase I Inhibitor ADC

- Humanized IgG1 monoclonal antibody against glypican-3 (GPC3)
 - Selective binding to GPC3 with desired human/cyno crossreactivity
 - Internalization into GPC3-expressing tumor cells
- ZD06519 topoisomerase I inhibitor payload
 - ADC cytotoxicity of target-expressing tumor cells
 - Bystander killing of adjacent target-negative tumor cells
- Drug-to-antibody-ratio (DAR) 4 and 8 molecules evaluated
 - Broad anti-tumor activity against HCC CDX/PDX models with a range of GPC3 expression
 - Impressive tolerability in a repeat-dose non-human primate toxicology study

ZW251 is a promising therapeutic candidate for patients with hepatocellular carcinoma

Acknowledgements

ZW251 preclinical project team and ADCTD group at Zymeworks¹

Medicinal Chemistry

- Mark Petersen
- Raffaele Colombo

Bioconjugation

- Kevin Yin
- Manuel Lasalle
- Katina Mak
- Vincent Fung

Antibody Discovery & Engineering

Dunja Urosev

In vivo Biology & PK

- Alex Wu
- Sam Lawn
- Devika Sim
- · Winnie Cheung
- Kaylee Wu

In vitro Biology

- Allysha Bissessur
- Adele Chan
- Renee Duan
- Catrina Kim
- Andrea Hernandez Rojas
- · Laurence Madera

Analytics

- Luying Yang
- Diego Alonzo
- Janice Tsui
- Linglan Fu

Toxicology

- Sara Hershberger²
- Marcie Wood²
- Daya Siddappa

Research Leadership

- Stuart Barnscher
- Jamie Rich
- · Paul Moore

Project Management

- Chi Wing Cheng
- Kari Frantzen

Intellectual Property

Neena Kuriakose

Business Development

- Steve Seredick
- Lisa Mullee