

TOPO1i ADC Platform: From Concept to Pipeline

World ADC London 2022

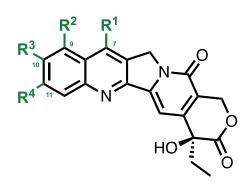
Thursday, 31st March 2022

60 Years of Camptothecins

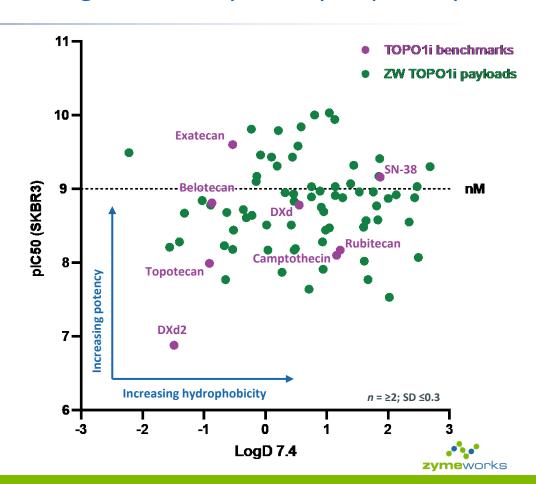
Potent inhibitors of topoisomerase I:

- Discovered in the early 1960 by M. E. Wall and M. C.
 Wani of Research Triangle Institute (RTI)
- Isolated from Camptotheca acuminata (The Happy Tree)
- Prevent DNA religation which results in double strand breaks and apoptosis

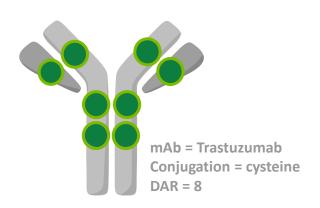
- 3 approved small molecules (Topotecan, Irinotecan, Belotecan)
- 2 approved ADCs (Enhertu, Trodelvy)
- Several ADCs, SMDCs, and NPs at different stages of development



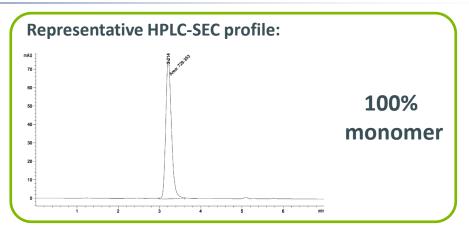
TOPO1i ADC Platform: From Concept to Pipeline

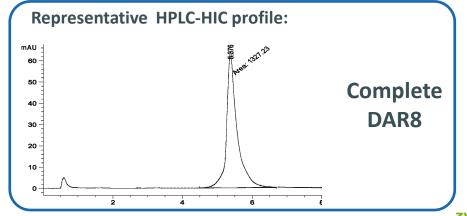

- 1 Synthesis of new payloads
 - 2 In vitro characterization of payloads
 - 3 Synthesis of drug linkers
 - 4 Conjugation
 - 5 In vitro activity of ADCs
 - 6 Additional assays and analysis
- 7 In vivo studies

Zymeworks TOPO1i Payloads Span Range of Potency and Hydrophilicity

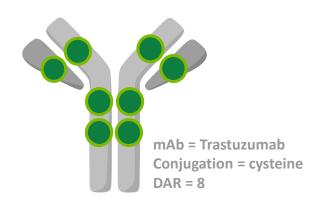

$$R^{3}$$
 R^{4}
 R^{4}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

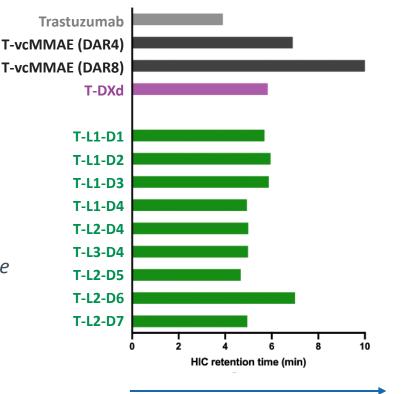
- √ ~100 new TOPO1i payloads prepared
- Range of potency and hydrophobicity
- ✓ Two linking strategies (from R¹ and R³ groups)


CONFIDENTIAL


ZW TOPO1i Drug-Linkers Yield ADCs with Desired Physicochemical Properties and Exceptionally Low Aggregation

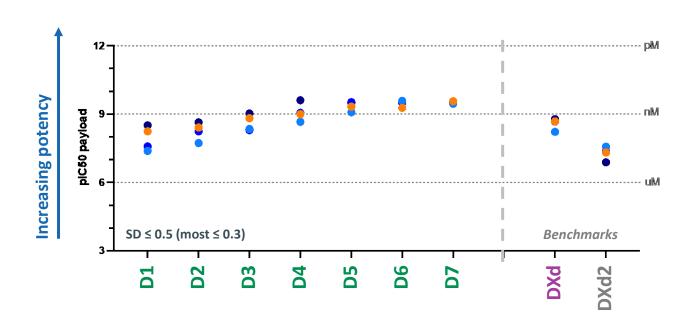
ADCs with ZW TOPO1i DLs:


- ✓ No aggregation for DAR8 (challenge for this class)
- ✓ Hydrophilic
- ✓ Robust freeze thaw stability

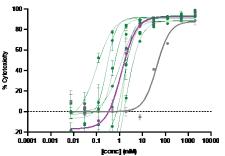


ZW TOPO1i Drug-Linkers Yield ADCs with Desired Physicochemical Properties and Exceptionally Low Aggregation

- ✓ No aggregation for DAR8 (challenge for this class)
- ✓ Hydrophilic
- Robust freeze thaw stability


Naked antibody

DXd benchmark ADC


ZW TOPO1i ADCs

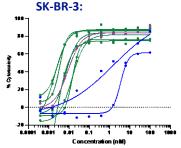
MMAE ADCs

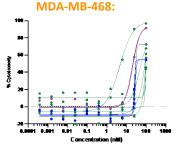
Payloads Showed Similar Potency to Benchmarks on Multiple Cell Lines

- pIC50 SK-BR-3
- pIC50 Calu-3
- pIC50 SK-OV-3
- pIC50 MDA-MB-468



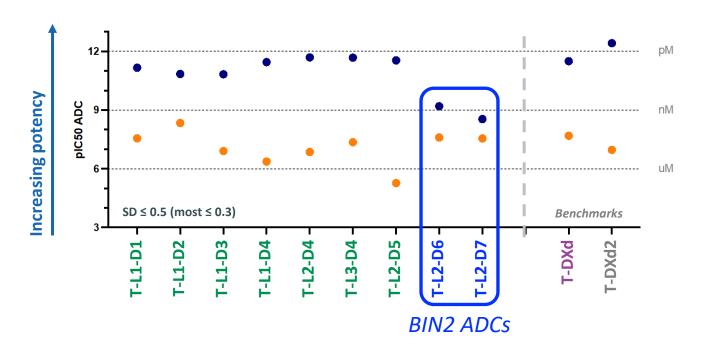
- **→** ZW TOPO1i payloads
- → DXd
- **→** DXd2



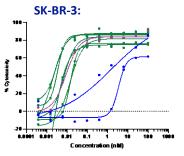


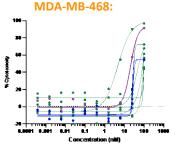
Most ADCs Showed Good Potency and Selectivity

- pIC50 SK-BR-3 (Ag+)
- pIC50 MDA-MB-468 (Ag-)

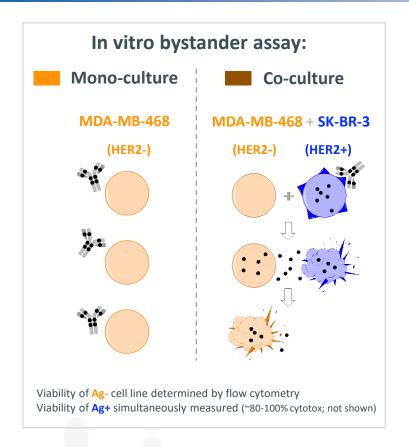


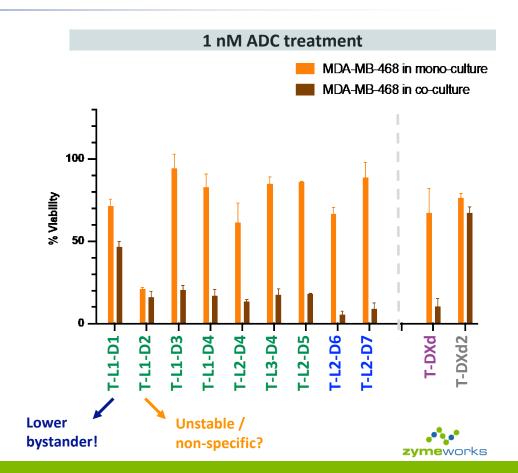
Representative pIC50 in an Ag+ cell line sensitive to TOPO1i ADCs and an Ag- cell line >70 cell lines tested in 2D assays with 8 different TAA TOPO1i ADCs (~25% sensitive)

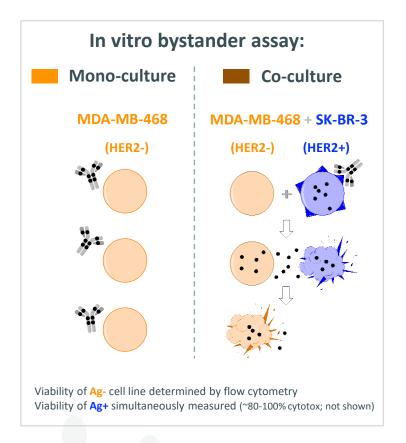


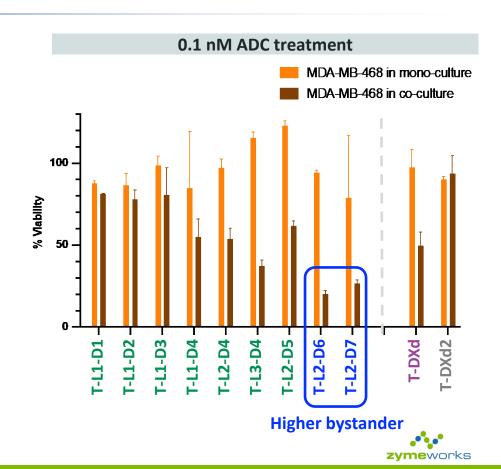

Most ADCs Showed Good Potency and Selectivity

Representative pIC50 in an Ag+ cell line sensitive to TOPO1i ADCs and an Ag- cell line >70 cell lines tested in 2D assays with 8 different TAA TOPO1i ADCs (~25% sensitive)

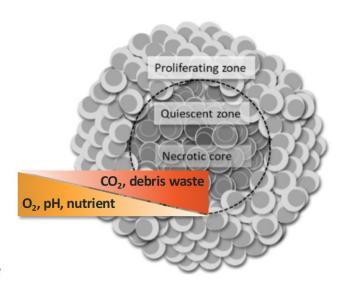

- pIC50 SK-BR-3 (Ag+)
- pIC50 MDA-MB-468 (Ag-)



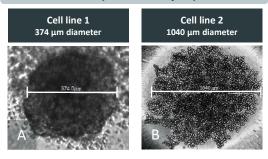



Strong Bystander Activity for Most Zymeworks TOPO1i ADCs

Higher Bystander Activity for Bin 2 ADCs



Fit for Purpose Spheroid Cytotoxicity Assay was Developed to Screen TOPO1i ADCs

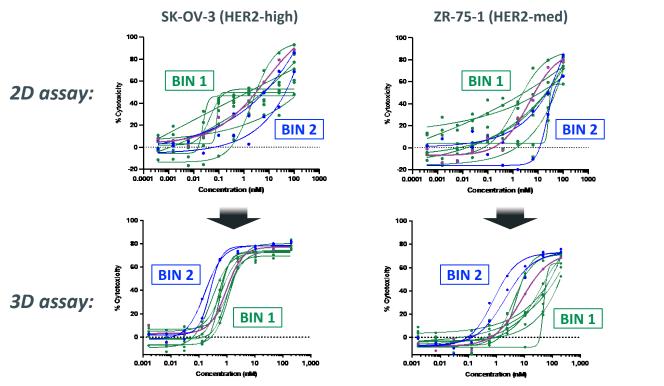

Key spheroid features:

- Spatial organization
- Layers of distinct cell populations
- Formation of different gradients from outer to inner regions
- More complex cell signaling
- Potential to recapitulate drug resistance and metabolic adaptation

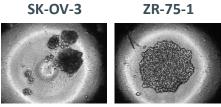
Adapted from: Pinto B, Henriques AC, Silva PMA, Bousbaa H. Pharmaceutics. 2020, 12, 1186

Size (200-1200 μm)

Spheroid imaging and viability


Picture

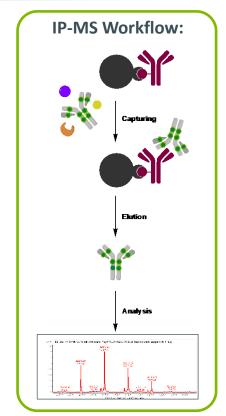
- A-B Spheroid phase contrast images; pre-ADC treatment
- C-D Live cells (Hoechst nuclear stain, blue), Apoptotic cells (YO-PRO-1, green), dead cells (YO-PRO-3, red); blanks (no treatment)


Cell Titer Glo is used to quantify spheroid viability post ADC treatment

Spheroid Cytotoxicity Assay Altered Dose-Response Relationship and Relative Potency Ranking of ADCs

- **—** T-TOPO1i ADCs (BIN 1)
- → T-TOPO1i ADCs (BIN 2)
- -- T-DXd

Phase contrast images acquired pre-ADC treatment


- Representative examples
- >30 cell lines paneled in 3D assays with 8 different TAA TOPO1i ADCs

Potency differences may be due to better bystander killing

ADC Plasma Stability Assays Revealed Liabilities for 2 Drug-Linkers

ADC	Observed payload instability (7 d, mouse plasma) 1
T-DXd	none
T-L1-D1	none
T-L1-D2	drug-linker fragmentation
T-L1-D3	none
T-L1-D4	none
T-L2-D4	none
T-L3-D4	none
T-L2-D5	drug-linker oxidation
T-L2-D6	none
T-L2-D7	none

ZW TOPO1i Payloads and ADCs Showed Good Photostability

Package leaflet / package insert of Enhertu:

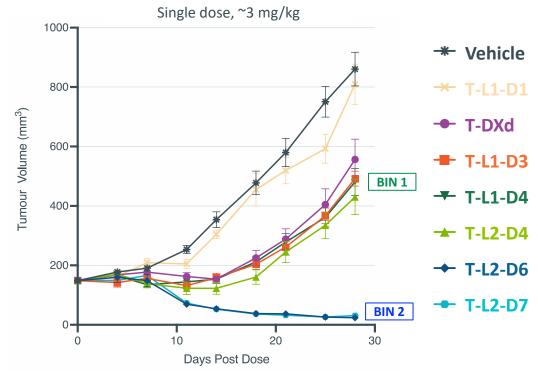
Cover the infusion bag to **protect from light**

If not used immediately, **protect from light**

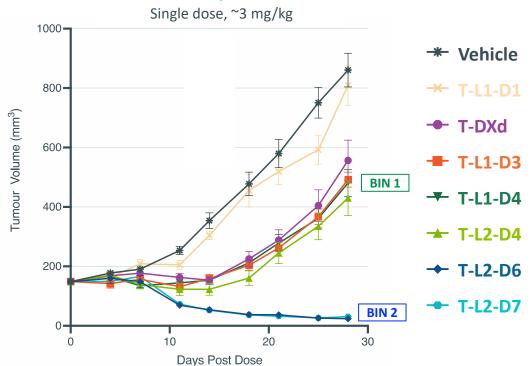
Payload	Payload photostability (16 days) 1
D3	90%
D4	78%

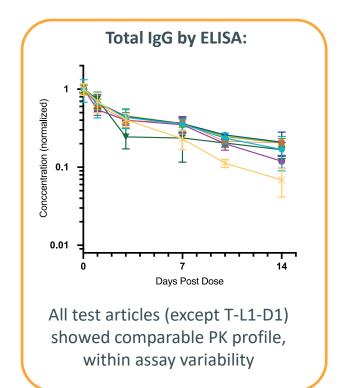
¹ As % of intact payload left after 16 days, room temp, no agitation, lab light

- No decomposition observed in amber vials
- Drug-linker stocks and ADCs protected from light as a precaution


ADC	ADC photostability (14 days) ²
T-DXd	86%
T-L1-D3	100%
T-L1-D4	100%
T-L2-D4	100%
T-L3-D4	94%

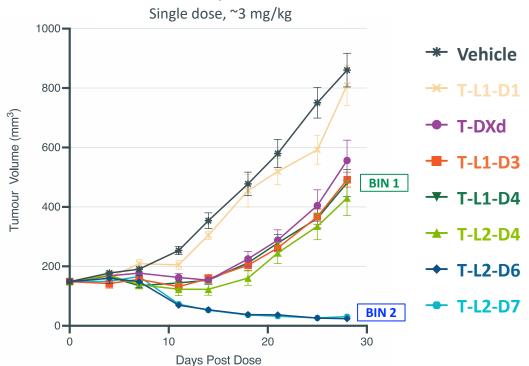
² As % of intact LC+D left after 14 days, room temp, no agitation, lab light

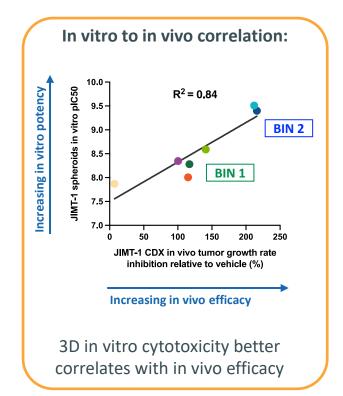

Most ZW TOPO1i ADCs Resulted in Comparable or Increased Efficacy vs. Benchmark in a JIMT-1 Study, Further Highlighting Two Separate Bins


JIMT-1 CDX, HER2-med

Most ZW TOPO1i ADCs Resulted in Comparable or Increased Efficacy vs. Benchmark in a JIMT-1 Study, Further Highlighting Two Separate Bins

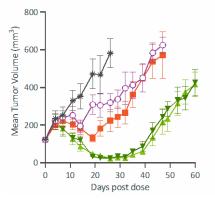
JIMT-1 CDX, HER2-med

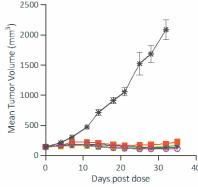


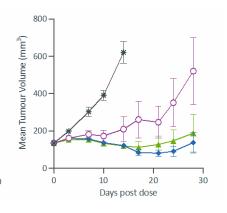


Most ZW TOPO1i ADCs Resulted in Comparable or Increased Efficacy vs. Benchmark in a JIMT-1 Study, Further Highlighting Two Separate Bins

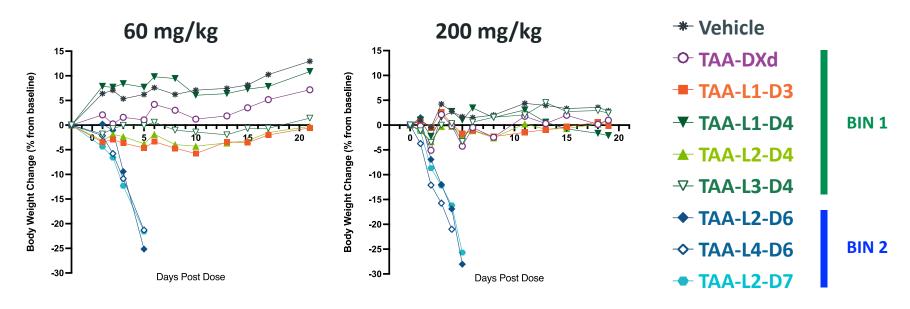
JIMT-1 CDX, HER2-med



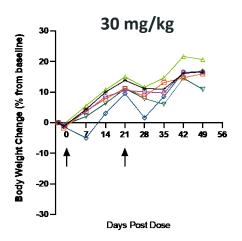

ZW TOPO1i ADCs Demonstrate Anti-Tumor Activity Comparable to DXd in Multiple *in vivo* Models

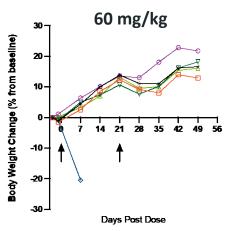

 Strong anti-tumor activity for DAR8 ADCs in cell line derived xenografts models across three targets with a single dose at 3 mg/kg

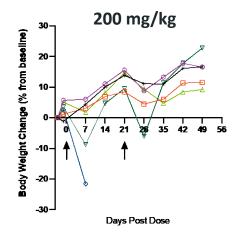
- -O- TAA-DXd
- **─** TAA-L1-D3
- → TAA-L2-D6
- **★** TAA-L2-D4
- **▼** TAA-L1-D4



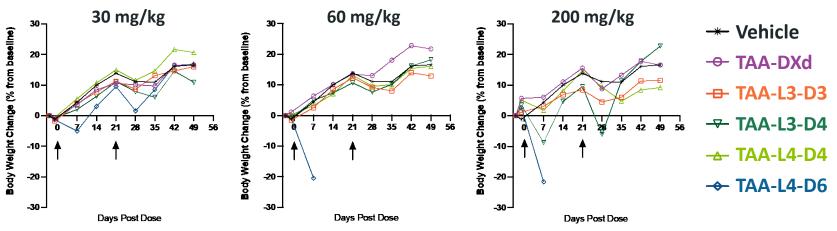
TAA	TAA1	TAA2	TAA3		
Model	Ovarian CDX	Lung CDX	Solid tumor CDX		
Target Expression Level	Med/Low, Heterogeneous	High	High/Med, Heterogeneous		
Mice per group	6	6	6		

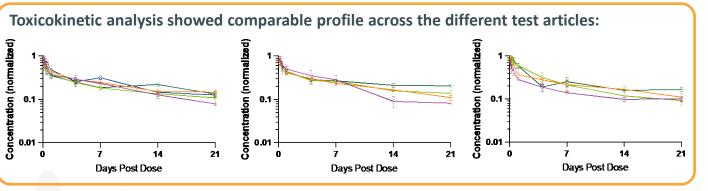

Four ZW TOPO1i ADCs are Tolerated in a High-Dose Murine Screening




- Balb/c female mice, 8 weeks old
- 60 and 200 mg/kg
- Intraperitoneal injection, single dose
- 3 animals per group

Two ZW TOPO1i ADC Leads Identified in a Rat Tox Study *


- * Vehicle
- **→** TAA-DXd
- **─** TAA-L3-D3
- **→** TAA-L3-D4
- → TAA-L4-D4
- → TAA-L4-D6
- · Female SD rats, 8 weeks old
- 30, 60 and 200 mg/kg
- IV injection, Q3Wx2
- 6 animals per group


* Selection based on:

body weight (shown), clinical signs, mortality, food consumptions, hematology, coagulation, clinical chemistry, urine analysis, histopathology, gross pathology, ophthalmoscopy, organ weights (not shown)

zvmeworks

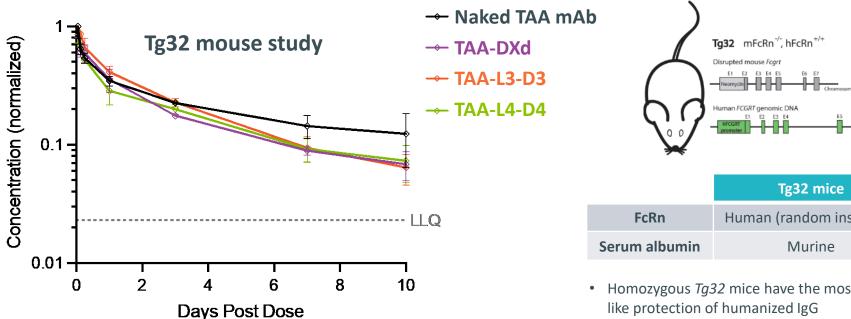
Two ZW TOPO1i ADC Leads Identified in a Rat Tox Study *

- Female SD rats, 8 weeks old
- 30, 60 and 200 mg/kg
- IV injection, Q3Wx2
- 6 animals per group

* Selection based on:

body weight (shown), clinical signs, mortality, food consumptions, hematology, coagulation, clinical chemistry, urine analysis, histopathology, gross pathology, ophthalmoscopy, organ weights (not shown)

Microscopic Findings Confirm Good Tolerability and Dose/Response for TAA-L3-D3 and TAA-L4-D4

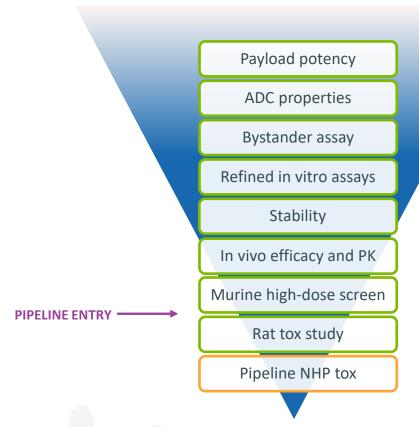

Test article	TAA-DXd		TAA-L3-D3		TAA-L3-D4			TAA-L4-D4				
Dose (mg/kg)	30	60	200	30	60	200	30	60	200	30	60	200
Bone marrow			X					X	Χ			X
Large intestine									Χ			
Small intestine		Χ	X				X	X	Χ		Χ	Χ
Lymph node		X	X		X	Χ	X	X	Χ		Χ	Χ
Spleen			X									
Thymus			X					X	Х		Χ	Χ
Pancreas											Χ	Χ
Salivary gland						Χ					Χ	Χ

Microscopic findings* were observed in the GI tract, bone marrow, thymus, spleen, pancreas, and salivary glands. Microscopic findings had resolved by 28 days following the second dose.

^{*} Severity not shown

ZW and DXd ADCs Showed Comparable PK Profiles in Tg32 Mice

- 5 mg/kg, single dose
- Intravenous injection
- 4 animals per group



- Homozygous *Tq32* mice have the most humanlike protection of humanized IgG
- Useful in evaluating the pharmacokinetics of human IgG

Adapted from: Nilsen, J.; Sandlie, I.; Roopenian, D.C.; Andersen, J.T. Current Opinion in Chemical Engineering, 2018, 19, 68-76

TOPO1i ADC Platform: From Concept to Pipeline

- Rapid effort to identify leads from ~100 TOPO1i payloads
- Comparable efficacy to industry leading DXd platform across different targets
- Two lead drug-linkers identified after rat tox study
- Pipeline NHP tox studies initiated
- Multiple pipeline programs in development

TOPO1i Team

Medicinal Chemistry

- Raffaele Colombo
- Mark Petersen
- Michael Brant
- Manuel Lasalle
- Graham Garnett
- Truman Schaefer

Bioconjugation

- Samir Das
- Vincent Fung
- Kevin Yin
- Katina Mak
- Meredith Clark
- Chen Fang

Analytics

- Luying Yang
- Tong Ding
- Diego Alonzo
- Cathy Dang
- Wen Zhang

In vitro Biology

- Andrea Hernandez
- Renee Duan
- Jodi Wong

Protein Engineering

- Dunja Urosev
- Gesa Volkers

In vivo Pharmacology

- Sam Lawn
- Alex Wu
- Kara White Moyes
- Fariha Ahmed-Qadri
- Madelyne Burcher
- Samantha Michaels

Pharmacokinetics

- Kaylee Wu
- Nancy Yang
- David Plotnik
- Rupert Davies

Toxicology

- Gerry Rowse
- Daya Siddapa

ADC Leadership

- Jamie Rich
- Stuart Barnscher

Project Manager

Kari Frantzen

Intellectual Property

Emma Macfarlane

Alliance Management

- Lucas Donigian
- Maryam Kabiri

Business Development:

- Lisa Mullee
- Steve Seredick
- Shannon Leighton

Presentation will be available at www.zymeworks.com/publications

